Photocatalytic Hydrogen Evolution from Alcohols using Dodecawolframosilicic Acid and Colloidal Platinum

James R. Darwent

Department of Chemistry, Birkbeck College, Malet Street, London WClE 7HX, U.K.

Illumination of dodecawolframosilicic acid and colloidal platinum leads to photocatalytic H_2 evolution from alcohols with a quantum yield for H_2 of 0.1 mol einstein⁻¹.

A recent communication suggested that heteropoly- and isopoly-compounds, such as $\text{SiW}_{12}\text{O}_{40}^{4-}$, could be used for the conversion of solar energy? These polyanions are photoreduced in the presence of alcohols² and reactions (1)–(3) were suggested for the photo-oxidation of propan-2-ol, $¹$ the overall</sup> process being that in reaction **(4).**

$$
SiW_{12}+\text{Me}_2CHOH\rightarrow SiW_{12}{}^-+\text{Me}_2\dot{C}OH\ +\ H^+\quad (1)
$$

$$
SiW_{12} + Me_2COH \rightarrow SiW_{12}^- + Me_2CO + H^+ \qquad (2)
$$

$$
4 SiW_{12}^- + O_2 + 4 H^+ \rightarrow 4 SiW_{12} + 2 H_2 O \qquad \qquad (3)
$$

$$
2Me_2CHOH + O_2 \rightarrow 2Me_2CO + 2H_2O \qquad \qquad (4)
$$

$$
\mathrm{SiW}_{12}=\mathrm{SiW}_{12}O_{40}H_4
$$

The reduction potentials for heteropolytungstates are sufficiently low³ for the reduction of water to be feasible in acid solution, so that reaction **(3)** could be replaced by reaction (5). The overall scheme would then be the photochemical dehydrogenation of propan-2-01, which is likely to

$$
2\text{SiW}_{12}^- + 2\text{H}^+ \rightarrow 2\text{SiW}_{12} + \text{H}_2 \tag{5}
$$

$$
Me2CHOH \rightarrow Me2CO + H2
$$
 (6)

be a more useful process; indeed the photocatalytic dehydrogenation of alcohols has received considerable attention in the study of heterogeneous semiconductor sensitizers.⁴

Platinum sols are excellent catalysts for the production of H₂ in photochemical systems.⁵ Previous work has shown that colloidal platinum can catalyse the reduction of water by reduced viologens,^{$6,7$} low-valence metal ions,⁷ and organic radicals.⁸ The results described now show that such colloids will also catalyse the reduction of water by SiW_{12} , so that the photodehydrogenation of alcohols is indeed achieved.

In a typical experiment the solution (50 ml) was illuminated in a 75 ml Pyrex flask using a 900 **W** xenon lamp (Applied Photophysics Clinical Reactor) with a Pyrex cut-off filter and **a** 5 cm cold water i.r. filter. H_2 was detected by injecting 50 μ l from the gas phase into a Perkin Elmer Sigma **4B** gas chromatograph. Colloidal platinum was prepared by boiling aqueous sodium citrate (160 ml; 1.7×10^{-3} M) and H₂PtCl₆ (2.4 \times 10^{-4} M)⁹ for 4 h. Solutions were purged with N₂ prior to illumination and the pH was maintained with H_2SO_4 .

inimation and the p11 was manual with $\frac{1}{2}SO_4$.
When a solution of SiW_{12} was illuminated $(\lambda > 300 \text{ nm})$ in the presence of an alcohol SiW_{12} ⁻ was formed (λ_{max} 700 nm) and the solution rapidly became deep blue. If colloidal platinum was also present the production of the blue colour was inhibited and H₂ was formed. For example 0.5 mmol of H₂ was formed in 11 h from a solution containing 50 μ mol of SiW₁₂ and 0.4 μ mol of platinum, which shows that the reaction is truly catalytic with respect to platinum and SiW_{12} . No H_2 was observed in the absence of SiW_{12} or alcohol although trace amounts (ca. 5 μ mol h⁻¹) of H₂ were detected when platinum

Figure 1. Variation in the initial rate of **H,** formation with (a), [MeOH]; (b), $\{SiW_{12}\}$; (c), [Pt]. Unless stated otherwise the concentrations were Pt, 2.4×10^{-5} M; MeOH, 2.5 M; $\{SiW_{12},\}$ 10⁻³ м; H₂SO₄, 0.5 м.

was absent.[†] Less than stoicheiometric amounts of formaldehyde were also detected ; presumably the aldehyde undergoes further photo-oxidation reactions to generate CO and $CO₂$.

Figure 1 shows the effect of MeOH, platinum, and SiW_{12} concentrations on the amount of H_2 produced in the first hour of irradiation. The rate increases dramatically for low concentrations of SiW_{12} and platinum to reach a maximum value at 10^{-3} M SiW₁₂ and *ca*. 10^{-5} M platinum. Above these values the rate decreases slightly for higher concentrations of platinum but remains constant as the concentration of SiW_{12} is increased. A similar effect was observed when the concentration of methanol was varied but in this case the maximum rate was observed at a much higher concentration *(cu.* 10 **M).** These observations are consistent with the mechanism outlined in equations (1)–(5). More than 90% of the incident photons below 360 nm will be absorbed by SiW_{12} at concentrations above 10^{-3} M, so that further increases in the concentration of

 \dagger SiW₁₂ will evolve H₂, in the absence of Pt, when reduced by more than one electron; E. N. Savinov, S. S. Saidanov, V. N. Parmon, and K. I. Zamaraev, *React. Kinet. Catal. Lett.*, 1981, **17,** 407.

 SiW_{12} will not significantly increase the number of photons which are absorbed. At the same time, high concentrations of methanol will be required for reaction (1) to compete with the rapid decay of the excited state of SiW_{12} .

The involvement of platinum in reaction (5) was also supported by μ s flash photolysis. Formation of SiW_{12} ⁻ occurred within the lifetime of the photoflash $(t_+ 20 \mu s)$ and in the absence of *0,* the radical was stable. When colloidal platinum was present the signal due to SiW_{12} ⁻ decayed with a half-life of MeOH, 9:1). $20 s$ **(SiV₁₂**, 5×10^{-5} M; Pt, 2.5×10^{-5} M; 0.5 M H_2SO_4 -

The quantum yield for H_2 production, from a solution in 0.5 M H₂SO₄–MeOH (1:1) containing Pt (10⁻⁵ M) and SiW₁₂ $(10^{-3}$ M), was 0.1 mol einstein⁻¹ at 340 nm. Other alcohols were also tested for H_2 production and the relative rates of H_2 formation were $1.0: 2.0: 3.6: 3.5$ for solutions containing 10% PrⁿOH, EtOH, MeOH, and Pr¹OH, respectively.

This work shows that in the presence of colloidal platinum SiW_{12} can sensitize the dehydrogenation of alcohols and it illustrates the versatility of colloidal metal catalysts in photochemical systems. A system based solely on SiW_{12} is unlikely to prove useful for solar energy conversion, since SiW_{12} absorbs light only below 360 nm. However, it should be possible to sensitize this reaction to visible light with heterocyclic dyes,¹⁰ which suggests that heteropolytungstate anions may function as a replacement for methyl viologen in many model systems for the reduction of water.

This work was supported by the S.E.R.C. and London University Central Research Fund.

Received, 25th March 1982; Corn. 344

References

- **1 E. Papaconstantinou, J.** *Chem. SOC., Chem. Commun.,* **1982, 12.**
- **2 L. Chalkley, J.** *Phys. Chem.,* **1952, 56, 1084.**
- **3 M. T. Pope and G. M. Varga, Inorg.** *Chem.,* **1966,5, 1249.**
- **4** *T.* **Kawai and T. Sakata, J.** *Chem. SOC., Chem. Commun.,* **1980, 694; P. Pichat, J-M. Herrmann, J. Disdier, H. Courbon, and M-N. Mozzanega,** *Nouv.* **J.** *Chim.,* **1981, 5, 627.**
- **5 J. Kiwi, K. Kalyanasundaram, and M. Gratzel, Struct.** *Bonding (Berlin),* **1982, 49, 38.**
- **6 J. Kiwi and M. Gratzel,** *Nature (London),* **1979, 281, 657; P. Keller, A. Moradpour, E. Amouyal, and H. B. Kagan,** *Nouv.* **J.** *Chim.,* **1980, 4, 377.**
- **7 B. V. Koryakin, T. S. Dzhabiev, and A, E. Shilov,** *Dokl. Akad. Nuuk. SSSR,* **1977,233, 620.**
- **8 C. K, Gratzel and M. Gratzel, J.** *Am. Chem. SOC.,* **1979,** *101,* **7741.**
- **9 R. M. Wilenzick, D. C. Russell, and R. H. Morriss, J.** *Chem. Phys.,* **1967, 47, 533.**
- **10 T. Yamase, Inorg.** *Chim. Acta,* **1981, 54, L207.**